3.3.71 \(\int \frac {(d+c^2 d x^2)^{3/2} (a+b \text {arcsinh}(c x))^2}{x^2} \, dx\) [271]

3.3.71.1 Optimal result
3.3.71.2 Mathematica [A] (verified)
3.3.71.3 Rubi [C] (warning: unable to verify)
3.3.71.4 Maple [A] (verified)
3.3.71.5 Fricas [F]
3.3.71.6 Sympy [F]
3.3.71.7 Maxima [F(-2)]
3.3.71.8 Giac [F(-2)]
3.3.71.9 Mupad [F(-1)]

3.3.71.1 Optimal result

Integrand size = 28, antiderivative size = 398 \[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x^2} \, dx=\frac {1}{4} b^2 c^2 d x \sqrt {d+c^2 d x^2}-\frac {5 b^2 c d \sqrt {d+c^2 d x^2} \text {arcsinh}(c x)}{4 \sqrt {1+c^2 x^2}}-\frac {3 b c^3 d x^2 \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{2 \sqrt {1+c^2 x^2}}+b c d \sqrt {1+c^2 x^2} \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))+\frac {3}{2} c^2 d x \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))^2+\frac {c d \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))^2}{\sqrt {1+c^2 x^2}}-\frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x}+\frac {c d \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))^3}{2 b \sqrt {1+c^2 x^2}}+\frac {2 b c d \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \log \left (1-e^{-2 \text {arcsinh}(c x)}\right )}{\sqrt {1+c^2 x^2}}-\frac {b^2 c d \sqrt {d+c^2 d x^2} \operatorname {PolyLog}\left (2,e^{-2 \text {arcsinh}(c x)}\right )}{\sqrt {1+c^2 x^2}} \]

output
-(c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))^2/x+1/4*b^2*c^2*d*x*(c^2*d*x^2+d)^ 
(1/2)+3/2*c^2*d*x*(a+b*arcsinh(c*x))^2*(c^2*d*x^2+d)^(1/2)-5/4*b^2*c*d*arc 
sinh(c*x)*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)-3/2*b*c^3*d*x^2*(a+b*arcsi 
nh(c*x))*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)+c*d*(a+b*arcsinh(c*x))^2*(c 
^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)+1/2*c*d*(a+b*arcsinh(c*x))^3*(c^2*d*x^ 
2+d)^(1/2)/b/(c^2*x^2+1)^(1/2)+2*b*c*d*(a+b*arcsinh(c*x))*ln(1-1/(c*x+(c^2 
*x^2+1)^(1/2))^2)*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)-b^2*c*d*polylog(2, 
1/(c*x+(c^2*x^2+1)^(1/2))^2)*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)+b*c*d*( 
a+b*arcsinh(c*x))*(c^2*x^2+1)^(1/2)*(c^2*d*x^2+d)^(1/2)
 
3.3.71.2 Mathematica [A] (verified)

Time = 3.50 (sec) , antiderivative size = 369, normalized size of antiderivative = 0.93 \[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x^2} \, dx=\frac {12 a^2 d \left (-2+c^2 x^2\right ) \sqrt {1+c^2 x^2} \sqrt {d+c^2 d x^2}+24 a b d \sqrt {d+c^2 d x^2} \left (-2 \sqrt {1+c^2 x^2} \text {arcsinh}(c x)+c x \text {arcsinh}(c x)^2+2 c x \log (c x)\right )+36 a^2 c d^{3/2} x \sqrt {1+c^2 x^2} \log \left (c d x+\sqrt {d} \sqrt {d+c^2 d x^2}\right )-8 b^2 d \sqrt {d+c^2 d x^2} \left (\text {arcsinh}(c x) \left (3 \sqrt {1+c^2 x^2} \text {arcsinh}(c x)-c x \text {arcsinh}(c x) (3+\text {arcsinh}(c x))-6 c x \log \left (1-e^{-2 \text {arcsinh}(c x)}\right )\right )+3 c x \operatorname {PolyLog}\left (2,e^{-2 \text {arcsinh}(c x)}\right )\right )+b^2 c d x \sqrt {d+c^2 d x^2} \left (4 \text {arcsinh}(c x)^3-6 \text {arcsinh}(c x) \cosh (2 \text {arcsinh}(c x))+\left (3+6 \text {arcsinh}(c x)^2\right ) \sinh (2 \text {arcsinh}(c x))\right )-6 a b c d x \sqrt {d+c^2 d x^2} (\cosh (2 \text {arcsinh}(c x))-2 \text {arcsinh}(c x) (\text {arcsinh}(c x)+\sinh (2 \text {arcsinh}(c x))))}{24 x \sqrt {1+c^2 x^2}} \]

input
Integrate[((d + c^2*d*x^2)^(3/2)*(a + b*ArcSinh[c*x])^2)/x^2,x]
 
output
(12*a^2*d*(-2 + c^2*x^2)*Sqrt[1 + c^2*x^2]*Sqrt[d + c^2*d*x^2] + 24*a*b*d* 
Sqrt[d + c^2*d*x^2]*(-2*Sqrt[1 + c^2*x^2]*ArcSinh[c*x] + c*x*ArcSinh[c*x]^ 
2 + 2*c*x*Log[c*x]) + 36*a^2*c*d^(3/2)*x*Sqrt[1 + c^2*x^2]*Log[c*d*x + Sqr 
t[d]*Sqrt[d + c^2*d*x^2]] - 8*b^2*d*Sqrt[d + c^2*d*x^2]*(ArcSinh[c*x]*(3*S 
qrt[1 + c^2*x^2]*ArcSinh[c*x] - c*x*ArcSinh[c*x]*(3 + ArcSinh[c*x]) - 6*c* 
x*Log[1 - E^(-2*ArcSinh[c*x])]) + 3*c*x*PolyLog[2, E^(-2*ArcSinh[c*x])]) + 
 b^2*c*d*x*Sqrt[d + c^2*d*x^2]*(4*ArcSinh[c*x]^3 - 6*ArcSinh[c*x]*Cosh[2*A 
rcSinh[c*x]] + (3 + 6*ArcSinh[c*x]^2)*Sinh[2*ArcSinh[c*x]]) - 6*a*b*c*d*x* 
Sqrt[d + c^2*d*x^2]*(Cosh[2*ArcSinh[c*x]] - 2*ArcSinh[c*x]*(ArcSinh[c*x] + 
 Sinh[2*ArcSinh[c*x]])))/(24*x*Sqrt[1 + c^2*x^2])
 
3.3.71.3 Rubi [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 1.95 (sec) , antiderivative size = 381, normalized size of antiderivative = 0.96, number of steps used = 18, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.607, Rules used = {6222, 6200, 6191, 262, 222, 6198, 6216, 211, 222, 6190, 25, 3042, 26, 4201, 2620, 2715, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x^2} \, dx\)

\(\Big \downarrow \) 6222

\(\displaystyle 3 c^2 d \int \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^2dx+\frac {2 b c d \sqrt {c^2 d x^2+d} \int \frac {\left (c^2 x^2+1\right ) (a+b \text {arcsinh}(c x))}{x}dx}{\sqrt {c^2 x^2+1}}-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x}\)

\(\Big \downarrow \) 6200

\(\displaystyle 3 c^2 d \left (-\frac {b c \sqrt {c^2 d x^2+d} \int x (a+b \text {arcsinh}(c x))dx}{\sqrt {c^2 x^2+1}}+\frac {\sqrt {c^2 d x^2+d} \int \frac {(a+b \text {arcsinh}(c x))^2}{\sqrt {c^2 x^2+1}}dx}{2 \sqrt {c^2 x^2+1}}+\frac {1}{2} x \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^2\right )+\frac {2 b c d \sqrt {c^2 d x^2+d} \int \frac {\left (c^2 x^2+1\right ) (a+b \text {arcsinh}(c x))}{x}dx}{\sqrt {c^2 x^2+1}}-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x}\)

\(\Big \downarrow \) 6191

\(\displaystyle 3 c^2 d \left (-\frac {b c \sqrt {c^2 d x^2+d} \left (\frac {1}{2} x^2 (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \int \frac {x^2}{\sqrt {c^2 x^2+1}}dx\right )}{\sqrt {c^2 x^2+1}}+\frac {\sqrt {c^2 d x^2+d} \int \frac {(a+b \text {arcsinh}(c x))^2}{\sqrt {c^2 x^2+1}}dx}{2 \sqrt {c^2 x^2+1}}+\frac {1}{2} x \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^2\right )+\frac {2 b c d \sqrt {c^2 d x^2+d} \int \frac {\left (c^2 x^2+1\right ) (a+b \text {arcsinh}(c x))}{x}dx}{\sqrt {c^2 x^2+1}}-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x}\)

\(\Big \downarrow \) 262

\(\displaystyle 3 c^2 d \left (-\frac {b c \sqrt {c^2 d x^2+d} \left (\frac {1}{2} x^2 (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {x \sqrt {c^2 x^2+1}}{2 c^2}-\frac {\int \frac {1}{\sqrt {c^2 x^2+1}}dx}{2 c^2}\right )\right )}{\sqrt {c^2 x^2+1}}+\frac {\sqrt {c^2 d x^2+d} \int \frac {(a+b \text {arcsinh}(c x))^2}{\sqrt {c^2 x^2+1}}dx}{2 \sqrt {c^2 x^2+1}}+\frac {1}{2} x \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^2\right )+\frac {2 b c d \sqrt {c^2 d x^2+d} \int \frac {\left (c^2 x^2+1\right ) (a+b \text {arcsinh}(c x))}{x}dx}{\sqrt {c^2 x^2+1}}-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {2 b c d \sqrt {c^2 d x^2+d} \int \frac {\left (c^2 x^2+1\right ) (a+b \text {arcsinh}(c x))}{x}dx}{\sqrt {c^2 x^2+1}}+3 c^2 d \left (\frac {\sqrt {c^2 d x^2+d} \int \frac {(a+b \text {arcsinh}(c x))^2}{\sqrt {c^2 x^2+1}}dx}{2 \sqrt {c^2 x^2+1}}+\frac {1}{2} x \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^2-\frac {b c \sqrt {c^2 d x^2+d} \left (\frac {1}{2} x^2 (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {x \sqrt {c^2 x^2+1}}{2 c^2}-\frac {\text {arcsinh}(c x)}{2 c^3}\right )\right )}{\sqrt {c^2 x^2+1}}\right )-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x}\)

\(\Big \downarrow \) 6198

\(\displaystyle \frac {2 b c d \sqrt {c^2 d x^2+d} \int \frac {\left (c^2 x^2+1\right ) (a+b \text {arcsinh}(c x))}{x}dx}{\sqrt {c^2 x^2+1}}-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x}+3 c^2 d \left (\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^3}{6 b c \sqrt {c^2 x^2+1}}+\frac {1}{2} x \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^2-\frac {b c \sqrt {c^2 d x^2+d} \left (\frac {1}{2} x^2 (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {x \sqrt {c^2 x^2+1}}{2 c^2}-\frac {\text {arcsinh}(c x)}{2 c^3}\right )\right )}{\sqrt {c^2 x^2+1}}\right )\)

\(\Big \downarrow \) 6216

\(\displaystyle \frac {2 b c d \sqrt {c^2 d x^2+d} \left (\int \frac {a+b \text {arcsinh}(c x)}{x}dx-\frac {1}{2} b c \int \sqrt {c^2 x^2+1}dx+\frac {1}{2} \left (c^2 x^2+1\right ) (a+b \text {arcsinh}(c x))\right )}{\sqrt {c^2 x^2+1}}-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x}+3 c^2 d \left (\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^3}{6 b c \sqrt {c^2 x^2+1}}+\frac {1}{2} x \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^2-\frac {b c \sqrt {c^2 d x^2+d} \left (\frac {1}{2} x^2 (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {x \sqrt {c^2 x^2+1}}{2 c^2}-\frac {\text {arcsinh}(c x)}{2 c^3}\right )\right )}{\sqrt {c^2 x^2+1}}\right )\)

\(\Big \downarrow \) 211

\(\displaystyle \frac {2 b c d \sqrt {c^2 d x^2+d} \left (\int \frac {a+b \text {arcsinh}(c x)}{x}dx-\frac {1}{2} b c \left (\frac {1}{2} \int \frac {1}{\sqrt {c^2 x^2+1}}dx+\frac {1}{2} x \sqrt {c^2 x^2+1}\right )+\frac {1}{2} \left (c^2 x^2+1\right ) (a+b \text {arcsinh}(c x))\right )}{\sqrt {c^2 x^2+1}}-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x}+3 c^2 d \left (\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^3}{6 b c \sqrt {c^2 x^2+1}}+\frac {1}{2} x \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^2-\frac {b c \sqrt {c^2 d x^2+d} \left (\frac {1}{2} x^2 (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {x \sqrt {c^2 x^2+1}}{2 c^2}-\frac {\text {arcsinh}(c x)}{2 c^3}\right )\right )}{\sqrt {c^2 x^2+1}}\right )\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {2 b c d \sqrt {c^2 d x^2+d} \left (\int \frac {a+b \text {arcsinh}(c x)}{x}dx+\frac {1}{2} \left (c^2 x^2+1\right ) (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {\text {arcsinh}(c x)}{2 c}+\frac {1}{2} x \sqrt {c^2 x^2+1}\right )\right )}{\sqrt {c^2 x^2+1}}-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x}+3 c^2 d \left (\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^3}{6 b c \sqrt {c^2 x^2+1}}+\frac {1}{2} x \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^2-\frac {b c \sqrt {c^2 d x^2+d} \left (\frac {1}{2} x^2 (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {x \sqrt {c^2 x^2+1}}{2 c^2}-\frac {\text {arcsinh}(c x)}{2 c^3}\right )\right )}{\sqrt {c^2 x^2+1}}\right )\)

\(\Big \downarrow \) 6190

\(\displaystyle \frac {2 b c d \sqrt {c^2 d x^2+d} \left (\frac {\int -\left ((a+b \text {arcsinh}(c x)) \coth \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c x)}{b}\right )\right )d(a+b \text {arcsinh}(c x))}{b}+\frac {1}{2} \left (c^2 x^2+1\right ) (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {\text {arcsinh}(c x)}{2 c}+\frac {1}{2} x \sqrt {c^2 x^2+1}\right )\right )}{\sqrt {c^2 x^2+1}}-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x}+3 c^2 d \left (\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^3}{6 b c \sqrt {c^2 x^2+1}}+\frac {1}{2} x \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^2-\frac {b c \sqrt {c^2 d x^2+d} \left (\frac {1}{2} x^2 (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {x \sqrt {c^2 x^2+1}}{2 c^2}-\frac {\text {arcsinh}(c x)}{2 c^3}\right )\right )}{\sqrt {c^2 x^2+1}}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 b c d \sqrt {c^2 d x^2+d} \left (-\frac {\int (a+b \text {arcsinh}(c x)) \coth \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c x)}{b}\right )d(a+b \text {arcsinh}(c x))}{b}+\frac {1}{2} \left (c^2 x^2+1\right ) (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {\text {arcsinh}(c x)}{2 c}+\frac {1}{2} x \sqrt {c^2 x^2+1}\right )\right )}{\sqrt {c^2 x^2+1}}-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x}+3 c^2 d \left (\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^3}{6 b c \sqrt {c^2 x^2+1}}+\frac {1}{2} x \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^2-\frac {b c \sqrt {c^2 d x^2+d} \left (\frac {1}{2} x^2 (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {x \sqrt {c^2 x^2+1}}{2 c^2}-\frac {\text {arcsinh}(c x)}{2 c^3}\right )\right )}{\sqrt {c^2 x^2+1}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 b c d \sqrt {c^2 d x^2+d} \left (-\frac {\int -i (a+b \text {arcsinh}(c x)) \tan \left (\frac {i a}{b}-\frac {i (a+b \text {arcsinh}(c x))}{b}+\frac {\pi }{2}\right )d(a+b \text {arcsinh}(c x))}{b}+\frac {1}{2} \left (c^2 x^2+1\right ) (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {\text {arcsinh}(c x)}{2 c}+\frac {1}{2} x \sqrt {c^2 x^2+1}\right )\right )}{\sqrt {c^2 x^2+1}}-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x}+3 c^2 d \left (\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^3}{6 b c \sqrt {c^2 x^2+1}}+\frac {1}{2} x \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^2-\frac {b c \sqrt {c^2 d x^2+d} \left (\frac {1}{2} x^2 (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {x \sqrt {c^2 x^2+1}}{2 c^2}-\frac {\text {arcsinh}(c x)}{2 c^3}\right )\right )}{\sqrt {c^2 x^2+1}}\right )\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {2 b c d \sqrt {c^2 d x^2+d} \left (\frac {i \int (a+b \text {arcsinh}(c x)) \tan \left (\frac {1}{2} \left (\frac {2 i a}{b}+\pi \right )-\frac {i (a+b \text {arcsinh}(c x))}{b}\right )d(a+b \text {arcsinh}(c x))}{b}+\frac {1}{2} \left (c^2 x^2+1\right ) (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {\text {arcsinh}(c x)}{2 c}+\frac {1}{2} x \sqrt {c^2 x^2+1}\right )\right )}{\sqrt {c^2 x^2+1}}-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x}+3 c^2 d \left (\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^3}{6 b c \sqrt {c^2 x^2+1}}+\frac {1}{2} x \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^2-\frac {b c \sqrt {c^2 d x^2+d} \left (\frac {1}{2} x^2 (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {x \sqrt {c^2 x^2+1}}{2 c^2}-\frac {\text {arcsinh}(c x)}{2 c^3}\right )\right )}{\sqrt {c^2 x^2+1}}\right )\)

\(\Big \downarrow \) 4201

\(\displaystyle \frac {2 b c d \sqrt {c^2 d x^2+d} \left (\frac {i \left (2 i \int \frac {e^{\frac {2 a}{b}-\frac {2 (a+b \text {arcsinh}(c x))}{b}-i \pi } (a+b \text {arcsinh}(c x))}{1+e^{\frac {2 a}{b}-\frac {2 (a+b \text {arcsinh}(c x))}{b}-i \pi }}d(a+b \text {arcsinh}(c x))-\frac {1}{2} i (a+b \text {arcsinh}(c x))^2\right )}{b}+\frac {1}{2} \left (c^2 x^2+1\right ) (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {\text {arcsinh}(c x)}{2 c}+\frac {1}{2} x \sqrt {c^2 x^2+1}\right )\right )}{\sqrt {c^2 x^2+1}}-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x}+3 c^2 d \left (\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^3}{6 b c \sqrt {c^2 x^2+1}}+\frac {1}{2} x \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^2-\frac {b c \sqrt {c^2 d x^2+d} \left (\frac {1}{2} x^2 (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {x \sqrt {c^2 x^2+1}}{2 c^2}-\frac {\text {arcsinh}(c x)}{2 c^3}\right )\right )}{\sqrt {c^2 x^2+1}}\right )\)

\(\Big \downarrow \) 2620

\(\displaystyle \frac {2 b c d \sqrt {c^2 d x^2+d} \left (\frac {i \left (2 i \left (\frac {1}{2} b \int \log \left (1+e^{\frac {2 a}{b}-\frac {2 (a+b \text {arcsinh}(c x))}{b}-i \pi }\right )d(a+b \text {arcsinh}(c x))-\frac {1}{2} b (a+b \text {arcsinh}(c x)) \log \left (1+e^{-\frac {2 (a+b \text {arcsinh}(c x))}{b}+\frac {2 a}{b}-i \pi }\right )\right )-\frac {1}{2} i (a+b \text {arcsinh}(c x))^2\right )}{b}+\frac {1}{2} \left (c^2 x^2+1\right ) (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {\text {arcsinh}(c x)}{2 c}+\frac {1}{2} x \sqrt {c^2 x^2+1}\right )\right )}{\sqrt {c^2 x^2+1}}-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x}+3 c^2 d \left (\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^3}{6 b c \sqrt {c^2 x^2+1}}+\frac {1}{2} x \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^2-\frac {b c \sqrt {c^2 d x^2+d} \left (\frac {1}{2} x^2 (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {x \sqrt {c^2 x^2+1}}{2 c^2}-\frac {\text {arcsinh}(c x)}{2 c^3}\right )\right )}{\sqrt {c^2 x^2+1}}\right )\)

\(\Big \downarrow \) 2715

\(\displaystyle \frac {2 b c d \sqrt {c^2 d x^2+d} \left (\frac {i \left (2 i \left (-\frac {1}{4} b^2 \int e^{-\frac {2 a}{b}+\frac {2 (a+b \text {arcsinh}(c x))}{b}+i \pi } \log \left (1+e^{\frac {2 a}{b}-\frac {2 (a+b \text {arcsinh}(c x))}{b}-i \pi }\right )de^{\frac {2 a}{b}-\frac {2 (a+b \text {arcsinh}(c x))}{b}-i \pi }-\frac {1}{2} b (a+b \text {arcsinh}(c x)) \log \left (1+e^{-\frac {2 (a+b \text {arcsinh}(c x))}{b}+\frac {2 a}{b}-i \pi }\right )\right )-\frac {1}{2} i (a+b \text {arcsinh}(c x))^2\right )}{b}+\frac {1}{2} \left (c^2 x^2+1\right ) (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {\text {arcsinh}(c x)}{2 c}+\frac {1}{2} x \sqrt {c^2 x^2+1}\right )\right )}{\sqrt {c^2 x^2+1}}-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x}+3 c^2 d \left (\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^3}{6 b c \sqrt {c^2 x^2+1}}+\frac {1}{2} x \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^2-\frac {b c \sqrt {c^2 d x^2+d} \left (\frac {1}{2} x^2 (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {x \sqrt {c^2 x^2+1}}{2 c^2}-\frac {\text {arcsinh}(c x)}{2 c^3}\right )\right )}{\sqrt {c^2 x^2+1}}\right )\)

\(\Big \downarrow \) 2838

\(\displaystyle \frac {2 b c d \sqrt {c^2 d x^2+d} \left (\frac {i \left (2 i \left (\frac {1}{4} b^2 \operatorname {PolyLog}(2,-a-b \text {arcsinh}(c x))-\frac {1}{2} b (a+b \text {arcsinh}(c x)) \log \left (1+e^{-\frac {2 (a+b \text {arcsinh}(c x))}{b}+\frac {2 a}{b}-i \pi }\right )\right )-\frac {1}{2} i (a+b \text {arcsinh}(c x))^2\right )}{b}+\frac {1}{2} \left (c^2 x^2+1\right ) (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {\text {arcsinh}(c x)}{2 c}+\frac {1}{2} x \sqrt {c^2 x^2+1}\right )\right )}{\sqrt {c^2 x^2+1}}-\frac {\left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x}+3 c^2 d \left (\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^3}{6 b c \sqrt {c^2 x^2+1}}+\frac {1}{2} x \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))^2-\frac {b c \sqrt {c^2 d x^2+d} \left (\frac {1}{2} x^2 (a+b \text {arcsinh}(c x))-\frac {1}{2} b c \left (\frac {x \sqrt {c^2 x^2+1}}{2 c^2}-\frac {\text {arcsinh}(c x)}{2 c^3}\right )\right )}{\sqrt {c^2 x^2+1}}\right )\)

input
Int[((d + c^2*d*x^2)^(3/2)*(a + b*ArcSinh[c*x])^2)/x^2,x]
 
output
-(((d + c^2*d*x^2)^(3/2)*(a + b*ArcSinh[c*x])^2)/x) + 3*c^2*d*((x*Sqrt[d + 
 c^2*d*x^2]*(a + b*ArcSinh[c*x])^2)/2 + (Sqrt[d + c^2*d*x^2]*(a + b*ArcSin 
h[c*x])^3)/(6*b*c*Sqrt[1 + c^2*x^2]) - (b*c*Sqrt[d + c^2*d*x^2]*((x^2*(a + 
 b*ArcSinh[c*x]))/2 - (b*c*((x*Sqrt[1 + c^2*x^2])/(2*c^2) - ArcSinh[c*x]/( 
2*c^3)))/2))/Sqrt[1 + c^2*x^2]) + (2*b*c*d*Sqrt[d + c^2*d*x^2]*(((1 + c^2* 
x^2)*(a + b*ArcSinh[c*x]))/2 - (b*c*((x*Sqrt[1 + c^2*x^2])/2 + ArcSinh[c*x 
]/(2*c)))/2 + (I*((-1/2*I)*(a + b*ArcSinh[c*x])^2 + (2*I)*(-1/2*(b*(a + b* 
ArcSinh[c*x])*Log[1 + E^((2*a)/b - I*Pi - (2*(a + b*ArcSinh[c*x]))/b)]) + 
(b^2*PolyLog[2, -a - b*ArcSinh[c*x]])/4)))/b))/Sqrt[1 + c^2*x^2]
 

3.3.71.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 211
Int[((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[x*((a + b*x^2)^p/(2*p + 1 
)), x] + Simp[2*a*(p/(2*p + 1))   Int[(a + b*x^2)^(p - 1), x], x] /; FreeQ[ 
{a, b}, x] && GtQ[p, 0] && (IntegerQ[4*p] || IntegerQ[6*p])
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 262
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x) 
^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[a*c^2*((m - 1)/ 
(b*(m + 2*p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b 
, c, p}, x] && GtQ[m, 2 - 1] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c 
, 2, m, p, x]
 

rule 2620
Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/ 
((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp 
[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x] - Si 
mp[d*(m/(b*f*g*n*Log[F]))   Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x 
)))^n/a)], x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4201
Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + (Complex[0, fz_])*(f_.)*(x_)], x 
_Symbol] :> Simp[(-I)*((c + d*x)^(m + 1)/(d*(m + 1))), x] + Simp[2*I   Int[ 
(c + d*x)^m*(E^(2*((-I)*e + f*fz*x))/(1 + E^(2*((-I)*e + f*fz*x)))), x], x] 
 /; FreeQ[{c, d, e, f, fz}, x] && IGtQ[m, 0]
 

rule 6190
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Simp[1/b 
 Subst[Int[x^n*Coth[-a/b + x/b], x], x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a 
, b, c}, x] && IGtQ[n, 0]
 

rule 6191
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] 
 :> Simp[(d*x)^(m + 1)*((a + b*ArcSinh[c*x])^n/(d*(m + 1))), x] - Simp[b*c* 
(n/(d*(m + 1)))   Int[(d*x)^(m + 1)*((a + b*ArcSinh[c*x])^(n - 1)/Sqrt[1 + 
c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]
 

rule 6198
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_ 
Symbol] :> Simp[(1/(b*c*(n + 1)))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]*( 
a + b*ArcSinh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c 
^2*d] && NeQ[n, -1]
 

rule 6200
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_ 
Symbol] :> Simp[x*Sqrt[d + e*x^2]*((a + b*ArcSinh[c*x])^n/2), x] + (Simp[(1 
/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]]   Int[(a + b*ArcSinh[c*x])^n/Sq 
rt[1 + c^2*x^2], x], x] - Simp[b*c*(n/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2* 
x^2]]   Int[x*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e 
}, x] && EqQ[e, c^2*d] && GtQ[n, 0]
 

rule 6216
Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(p_.))/(x_), 
 x_Symbol] :> Simp[(d + e*x^2)^p*((a + b*ArcSinh[c*x])/(2*p)), x] + (Simp[d 
   Int[(d + e*x^2)^(p - 1)*((a + b*ArcSinh[c*x])/x), x], x] - Simp[b*c*(d^p 
/(2*p))   Int[(1 + c^2*x^2)^(p - 1/2), x], x]) /; FreeQ[{a, b, c, d, e}, x] 
 && EqQ[e, c^2*d] && IGtQ[p, 0]
 

rule 6222
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_ 
.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(f*x)^(m + 1)*(d + e*x^2)^p*((a + b*Arc 
Sinh[c*x])^n/(f*(m + 1))), x] + (-Simp[2*e*(p/(f^2*(m + 1)))   Int[(f*x)^(m 
 + 2)*(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])^n, x], x] - Simp[b*c*(n/(f*( 
m + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]   Int[(f*x)^(m + 1)*(1 + c^2*x 
^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e 
, f}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1]
 
3.3.71.4 Maple [A] (verified)

Time = 0.31 (sec) , antiderivative size = 473, normalized size of antiderivative = 1.19

method result size
default \(-\frac {a^{2} \left (c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}}{d x}+a^{2} c^{2} x \left (c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}+\frac {3 \sqrt {c^{2} d \,x^{2}+d}\, a^{2} c^{2} d x}{2}+\frac {3 a^{2} c^{2} d^{2} \ln \left (\frac {c^{2} d x}{\sqrt {c^{2} d}}+\sqrt {c^{2} d \,x^{2}+d}\right )}{2 \sqrt {c^{2} d}}+\frac {b^{2} \sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (2 \operatorname {arcsinh}\left (c x \right )^{2} \sqrt {c^{2} x^{2}+1}\, x^{2} c^{2}-2 \,\operatorname {arcsinh}\left (c x \right ) c^{3} x^{3}+2 \operatorname {arcsinh}\left (c x \right )^{3} x c +c^{2} x^{2} \sqrt {c^{2} x^{2}+1}-4 \operatorname {arcsinh}\left (c x \right )^{2} x c +8 \,\operatorname {arcsinh}\left (c x \right ) \ln \left (1+c x +\sqrt {c^{2} x^{2}+1}\right ) x c +8 \,\operatorname {arcsinh}\left (c x \right ) \ln \left (1-c x -\sqrt {c^{2} x^{2}+1}\right ) x c -4 \sqrt {c^{2} x^{2}+1}\, \operatorname {arcsinh}\left (c x \right )^{2}-\operatorname {arcsinh}\left (c x \right ) c x +8 \operatorname {polylog}\left (2, -c x -\sqrt {c^{2} x^{2}+1}\right ) x c +8 \operatorname {polylog}\left (2, c x +\sqrt {c^{2} x^{2}+1}\right ) x c \right ) d}{4 \sqrt {c^{2} x^{2}+1}\, x}+\frac {a b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (4 \,\operatorname {arcsinh}\left (c x \right ) \sqrt {c^{2} x^{2}+1}\, x^{2} c^{2}-2 c^{3} x^{3}+6 \operatorname {arcsinh}\left (c x \right )^{2} x c -8 \,\operatorname {arcsinh}\left (c x \right ) c x +8 \ln \left (\left (c x +\sqrt {c^{2} x^{2}+1}\right )^{2}-1\right ) x c -8 \,\operatorname {arcsinh}\left (c x \right ) \sqrt {c^{2} x^{2}+1}-c x \right ) d}{4 \sqrt {c^{2} x^{2}+1}\, x}\) \(473\)
parts \(-\frac {a^{2} \left (c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}}{d x}+a^{2} c^{2} x \left (c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}+\frac {3 \sqrt {c^{2} d \,x^{2}+d}\, a^{2} c^{2} d x}{2}+\frac {3 a^{2} c^{2} d^{2} \ln \left (\frac {c^{2} d x}{\sqrt {c^{2} d}}+\sqrt {c^{2} d \,x^{2}+d}\right )}{2 \sqrt {c^{2} d}}+\frac {b^{2} \sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (2 \operatorname {arcsinh}\left (c x \right )^{2} \sqrt {c^{2} x^{2}+1}\, x^{2} c^{2}-2 \,\operatorname {arcsinh}\left (c x \right ) c^{3} x^{3}+2 \operatorname {arcsinh}\left (c x \right )^{3} x c +c^{2} x^{2} \sqrt {c^{2} x^{2}+1}-4 \operatorname {arcsinh}\left (c x \right )^{2} x c +8 \,\operatorname {arcsinh}\left (c x \right ) \ln \left (1+c x +\sqrt {c^{2} x^{2}+1}\right ) x c +8 \,\operatorname {arcsinh}\left (c x \right ) \ln \left (1-c x -\sqrt {c^{2} x^{2}+1}\right ) x c -4 \sqrt {c^{2} x^{2}+1}\, \operatorname {arcsinh}\left (c x \right )^{2}-\operatorname {arcsinh}\left (c x \right ) c x +8 \operatorname {polylog}\left (2, -c x -\sqrt {c^{2} x^{2}+1}\right ) x c +8 \operatorname {polylog}\left (2, c x +\sqrt {c^{2} x^{2}+1}\right ) x c \right ) d}{4 \sqrt {c^{2} x^{2}+1}\, x}+\frac {a b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (4 \,\operatorname {arcsinh}\left (c x \right ) \sqrt {c^{2} x^{2}+1}\, x^{2} c^{2}-2 c^{3} x^{3}+6 \operatorname {arcsinh}\left (c x \right )^{2} x c -8 \,\operatorname {arcsinh}\left (c x \right ) c x +8 \ln \left (\left (c x +\sqrt {c^{2} x^{2}+1}\right )^{2}-1\right ) x c -8 \,\operatorname {arcsinh}\left (c x \right ) \sqrt {c^{2} x^{2}+1}-c x \right ) d}{4 \sqrt {c^{2} x^{2}+1}\, x}\) \(473\)

input
int((c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))^2/x^2,x,method=_RETURNVERBOSE)
 
output
-a^2/d/x*(c^2*d*x^2+d)^(5/2)+a^2*c^2*x*(c^2*d*x^2+d)^(3/2)+3/2*(c^2*d*x^2+ 
d)^(1/2)*a^2*c^2*d*x+3/2*a^2*c^2*d^2*ln(c^2*d*x/(c^2*d)^(1/2)+(c^2*d*x^2+d 
)^(1/2))/(c^2*d)^(1/2)+1/4*b^2*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/x*( 
2*arcsinh(c*x)^2*(c^2*x^2+1)^(1/2)*x^2*c^2-2*arcsinh(c*x)*c^3*x^3+2*arcsin 
h(c*x)^3*x*c+c^2*x^2*(c^2*x^2+1)^(1/2)-4*arcsinh(c*x)^2*x*c+8*arcsinh(c*x) 
*ln(1+c*x+(c^2*x^2+1)^(1/2))*x*c+8*arcsinh(c*x)*ln(1-c*x-(c^2*x^2+1)^(1/2) 
)*x*c-4*(c^2*x^2+1)^(1/2)*arcsinh(c*x)^2-arcsinh(c*x)*c*x+8*polylog(2,-c*x 
-(c^2*x^2+1)^(1/2))*x*c+8*polylog(2,c*x+(c^2*x^2+1)^(1/2))*x*c)*d+1/4*a*b* 
(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/x*(4*arcsinh(c*x)*(c^2*x^2+1)^(1/2 
)*x^2*c^2-2*c^3*x^3+6*arcsinh(c*x)^2*x*c-8*arcsinh(c*x)*c*x+8*ln((c*x+(c^2 
*x^2+1)^(1/2))^2-1)*x*c-8*arcsinh(c*x)*(c^2*x^2+1)^(1/2)-c*x)*d
 
3.3.71.5 Fricas [F]

\[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x^2} \, dx=\int { \frac {{\left (c^{2} d x^{2} + d\right )}^{\frac {3}{2}} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}^{2}}{x^{2}} \,d x } \]

input
integrate((c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))^2/x^2,x, algorithm="frica 
s")
 
output
integral((a^2*c^2*d*x^2 + a^2*d + (b^2*c^2*d*x^2 + b^2*d)*arcsinh(c*x)^2 + 
 2*(a*b*c^2*d*x^2 + a*b*d)*arcsinh(c*x))*sqrt(c^2*d*x^2 + d)/x^2, x)
 
3.3.71.6 Sympy [F]

\[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x^2} \, dx=\int \frac {\left (d \left (c^{2} x^{2} + 1\right )\right )^{\frac {3}{2}} \left (a + b \operatorname {asinh}{\left (c x \right )}\right )^{2}}{x^{2}}\, dx \]

input
integrate((c**2*d*x**2+d)**(3/2)*(a+b*asinh(c*x))**2/x**2,x)
 
output
Integral((d*(c**2*x**2 + 1))**(3/2)*(a + b*asinh(c*x))**2/x**2, x)
 
3.3.71.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x^2} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate((c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))^2/x^2,x, algorithm="maxim 
a")
 
output
Exception raised: RuntimeError >> ECL says: expt: undefined: 0 to a negati 
ve exponent.
 
3.3.71.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x^2} \, dx=\text {Exception raised: TypeError} \]

input
integrate((c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))^2/x^2,x, algorithm="giac" 
)
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 
3.3.71.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))^2}{x^2} \, dx=\int \frac {{\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )}^2\,{\left (d\,c^2\,x^2+d\right )}^{3/2}}{x^2} \,d x \]

input
int(((a + b*asinh(c*x))^2*(d + c^2*d*x^2)^(3/2))/x^2,x)
 
output
int(((a + b*asinh(c*x))^2*(d + c^2*d*x^2)^(3/2))/x^2, x)